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1
A B S T R AC T

The thesis project consists in the theoretical and computational investigation of the
influence on the mechanical properties of nanoscale conductors due to the presence
of thermodynamic equilibrium rupture conditions, under current conditions of parti-
cles and energy (1, 2). They are analyzed by nanostructures such as metal nanocon-
tacts, rare earth nanocontacts (Europium, Gadolinium), two-dimensional nanomateri-
als (graphene), molecular conductors ...

The main line of the project deals with the theoretical description at the atomic
level of the interaction between electronic-spintronic transport and the nanomechan-
ics of the conductors, that is, the forces experienced by each atom, the result of trans-
port conditions and rupture of equilibrium. This phenomenon is known as electromi-
gration. The aforementioned phenomenology gives rise to applications in Nanotech-
nology, as is the case of the manipulation of individual atoms mediated by voltage
and current (4,6). Individual atoms serve as building-blocks for nanoengineering, na-
noelectronics and nanospintronics. As a result of the collaboration with experimen-
tal physicists from other universities, the study of magnetic properties of rare earth
nanocontacts such as Europium and Gadolinium was carried out in the presence of a
very densely localized electric current and a strong magnetic field (5 ).

The core of the methodology used to address the problems raised is standard in the
Theoretical Physics of Condensed matter and Nanotechnology when they are treated
from the theoretical-computational mechano-quantum approach.

In the first place, the so-called Functional Density Theory (DFT) intervenes, in this
case, applied on a base of localized Gaussian wave functions that make up a reduced
Hilbert space. This method based on the use of localized orbitals is known as the
Linear Combination of Atomic Orbitals (LCAO), and is of conventional use in the
study of finite mechano-quantum systems (such as molecules) and periodic infinity
(such as crystals).

The foundation of the thermodynamic forces acting on atoms lies in the Lippmann-
Schwinger Scattering State Formalism, which explains the behavior of particles through
a constriction or potential obstacle. This formalism, in order to be implemented
computationally in simulations, needs to be translated into the Green Functions Off-
Balance (NEGF) method. The incorporation of the electrodes or reservoirs of parti-
cles through boundary conditions allows reproducing the conditions of infinite non-
periodic system. These are necessary to study nanoscale contacts between macro-
scopic electrodes and simulate the rupture of electrochemical equilibrium. There is a
matrix form of the NEGF formalism, which is given by the description of the electron
density projected as a matrix on the basis of wave functions of Gaussian profile. This
description facilitates the compatibility of this formalism with the previous one, the
LCAO-DFT. The combination of both methods is widespread among the community



of scientists specialized in the fields of Nanophysics, Nanoelectronics and Nanospin-
tronics.

The theoretical extension of the formalism that describes the thermodynamic forces
through the NEGF-DFT method in its LCAO form for the description of electonic and
spintronic systems out of balance is the central object of this thesis.



2
R E S U M E N

El proyecto de tesis consiste en la investigación teórica y computacional de la influ-
encia sobre las propiedades mecánicas de conductores a escala nanométrica debidas
a la presencia de condiciones de ruptura del equilibrio termodinámico, bajo condicio-
nes de corriente de partículas y energía (1,2). Son objeto de análisis nanoestructuras
como nanocontactos metálicos, nanocontactos de tierras raras (Europio, Gadolinio),
nanomateriales bidimensionales (grafeno), conductores moleculares...

La línea principal del proyecto trata la descripción teórica a nivel atómico de la
interacción entre transporte electrónico-spintrónico y la nanomecánica de los con-
ductores, esto es, las fuerzas que experimenta cada átomo, fruto de las condiciones
de transporte y ruptura del equilibrio. A este fenómeno se le conoce como electromi-
gración. La mencionada fenomenología da lugar a aplicaciones en Nanotecnología,
como es el caso de la manipulación de átomos individuales mediada por voltaje y
corriente (4,6). Los átomos individuales cumplen la función de building-blocks para
hacer nanoingeniería, nanoelectrónica y nanospintrónica. Como resultado de la co-
laboración con físicos experimentales de otras universidades se ha llevado a cabo el
estudio de propiedades magnéticas de nanocontactos de tierras raras como Europio
y Gadolinio en presencia de corriente eléctrica muy densamente localizada y campo
magnético fuerte (5).

El núcleo de la metodología empleada para abordar los problemas planteados es
estándar en la Física Teórica de la materia Condensada y la Nanotecnología cuando
son tratadas desde la aproximación teórica-computacional mecano-cuántica.

En primer lugar interviene la conocida como Teoría del Funcional Densidad (DFT,
por sus siglas en inglés), en este caso, aplicada sobre una base de funciones de onda
gaussianas localizadas que conforman un espacio de Hilbert reducido. A este método
basado en el uso de orbitales localizados se le conoce como Combinación Lineal
de Orbitales Atómicos (LCAO), y es de uso convencional en el estudio de sistemas
mecano-cuánticos finitos (como moléculas) e infinitos periódicos (como cristales).

La fundamentación de las fuerzas termodinámicas que actúan sobre los átomos ra-
dica en el Formalismo de estados de Scattering de Lippmann-Schwinger, que explica
el comportamiento de las partículas atravesando una constricción o un obstáculo de
potencial. Este formalismo, a fin de ser implementado computacionalmente en simu-
laciones, necesita ser traducido al método de Funciones de Green fuera del equilibrio
(NEGF). La incorporación de los electrodos o reservorios de partículas a través de
las condiciones de frontera permite reproducir las condiciones de sistema infinito no
periódico. Estas son necesarias para estudiar contactos de escala nanométrica entre
electrodos macroscópicos y simular la ruptura del equilibrio electroquímico. Existe
una forma matricial del formalismo NEGF, que viene dada por la descripción de la
densidad electrónica proyectada como matriz sobre la base de funciones de onda de
perfil gaussiano. Esta descripción facilita la compatibilidad de este formalismo con
el anterior, el LCAO-DFT. La combinación de ambos métodos está extendida entre la



comunidad de científicos especializados en los ámbitos de la Nanofísica, Nanoelec-
trónica y Nanospintrónica.

La extensión teórica del formalismo que describe las fuerzas termodinámicas a
través del método NEGF-DFT en su forma LCAO para la descripción de sistemas
electónicos y spintrónicos fuera del equilibrio es el objeto central de esta tesis.
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single Pb adatoms, respectively. All contacts were formed
with bias voltages ranging from �50 mV to 50 mV. . . . . . 69
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Figure 6.3 Calculations of conductance-distance characteristics during
forming and breaking of Pb contacts. (a) A single-atom
terminated tip approaches (filled symbols) to and retracts
(open symbols) from on-top (squares) and hollow (circles)
Pb(111) lattice sites. (b) Same as (a) for a single Pb adatom
(triangles). (c), (d) Position of single-atom terminated tip
(filled and hatched circles for apex atom and second-layer
atoms, respectively) relative to the Pb(111) lattice (circles)
for contacts comprising the on-top (c) and the hollow (d)
site. (e), (f) Like (a), (b) for a four-atom terminated tip.
(g), (h) Position of four-atom terminated tip (filled circles)
relative to the Pb(111) lattice (circles) for contacts compris-
ing the on-top (g) and hollow (h) site. (i) Snapshots of cal-
culated contact geometries for a single-atom terminated tip
approaching an on-top site of pristine Pb(111). Increasing
(decreasing) displacements (�z) correspond to tip approach
(retraction). Upon retraction the tip apex atom (encircled by
a full red line) is transferred to a Pb(111) hollow site adja-
cent to the approached on-top site. . . . . . . . . . . . . . . 72

Figure H.1 Contour for the Hamiltonian Ĥ(z) to calculate the time-
dependent ensemble average of any operator in a system
whose time-evolution is governed by the Hamiltonian Ĥ(z)

from the initial equilibrium in t0. The system is supposed to
be at temperature T , being � = 1=(kBT ). . . . . . . . . . . 112
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Table 6.1 Calculated contact conductances (Gc) and hysteresis widths
(H) of atom-sized Pb junctions. Pb tips grown in the h100i
( h111i ) have apices terminated by 1 and 4 (1 and 3) atoms.
On pristine Pb(111) contacts are formed at on-top and hol-
low sites. The contacted single Pb adatom resides at a Pb(111)
hollow site. . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Part II

T H E S I S



1
G R E E N ’ S F U N C T I O N

1.1 H A M I LT O N I A N

We treat systems with scattering Hamiltonian operators of the form Ĥ = Ĥ0 + Ĥint,
which can be written in terms of the Lippmann-Schwinger scattering states operators,
which diagonalize the Hamiltonian, as:

Ĥ(x; t) =
X
k�

�k� ̂
y
k�(x; t) ̂k�(x; t) (1.1)

where  ̂yk� creates a particle in the eigenstate with eigenenergy �k� connected to
reservoir � (typically L;R) and k labels the continuum of states.

It is important to notice that in equation (1.1) and throughout this book x = (r�)

is contraction for the position-spin coordinate, based on the notation in reference
(Stefanucci & Van Leeuwen, 2010) and explained in A. Thus, there is no need to
specify the spin component of the scattering eigenstate operators  ̂yk�(x; t), because
it is completely specified by entry x.

The expression of the scattering Hamiltonian in terms of its eigenstates is closely
related to the expression of the number operator N̂ :

N̂(x; t) =
X
k�

 ̂yk�(x; t) ̂k�(x; t) (1.2)

If we convert the expressions to a general basis set of spin-orbitals ’i(x), where the
Lippmann-Schwinger scattering eigenstates take the form of a linear combination:

 ̂(x; t) =
X
i

’i(x)d̂i(t);  ̂
y(x; t) =

X
i

’�i (x)d̂yi (t); (1.3)

we get expressions for the operators which are more suitable for the computations,
for example, if the ’i(x) basis constitutes a combination of plane waves or a linear
combination of atomic orbitals (LCAO), by which the infinite system can be decom-
posed to the Caroli partition scheme, frequent in the literature (Datta, 1995; Caroli,
Combescot, Nozieres, & Saint-James, 1971). This Hamiltonian consists of a nonin-
teracting part and an interacting one as:

Ĥ = Ĥ0 + Ĥint (1.4)
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The noninteracting Ĥ0 part in second quantization is:

Ĥ0 =
X
mn

�m=�n

HC
mnd̂

y
m�d̂n�

| {z }
central region

+
X
�k

��kn̂�k| {z }
reservoirs

+
X
m;�k

��k=�m

Tm�kd̂
y
md̂�k + T�kmd̂

y
�kd̂m

| {z }
coupling

(1.5)

where � labels each reservoir and the quantum numbers m, n, k of the general
basis of spin-orbitals are the contraction for an orbital and a spin quantum number,
based on the notation in reference (Stefanucci & Van Leeuwen, 2010) and explained
in A, so that:

m = sm�m; n = sn�n; k = sk�k: (1.6)

In equation (1.5) the sum is restricted to matrix elements where �m = �n in the
central region C and ��k = �m for the coupling because the one-body interactions
in the noninteracting Hamiltonian Ĥ0 involved are independent of spin.

In the other hand, the Hartree-Fock-like interaction:

Ĥint =
1

2

X
ijmn
�i=�n
�j=�m

vijmnd̂
y
i d̂
y
j d̂md̂n

(1.7)

where the interaction is restricted to wavefunctions localized in the central region
and the matrix elements vijmn are:

vijmn =

Z
dxdx0’�i (x)’�j (x

0)v(x;x0)’m(x0)’n(x) (1.8)

In equations (1.7) and (1.8), as in equations (1.5) and (1.6), the quantum numbers
of the general basis of spin-orbitals are the contraction for an orbital and a spin quan-
tum number,as explained in A, so that:

i = si�i; j = sj�j ; m = sm�m; n = sn�n: (1.9)
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From (1.8), because the interaction is independent of spin (v(x;x0) = v(r; r0)), we
conclude that vijmn is zero if �j 6= �m or �i 6= �n. Thus, (1.7), being �i = �n = �

and �j = �m = �0, reduces to:

Ĥint =
1

2

X
sisjsmsn
��0

vsisjsmsn d̂
y
si�d̂

y
sj�0

d̂sm�0 d̂sn� (1.10)

where we have expanded the spin-orbital quantum numbers as in (1.9). The inter-
acting part is not quadratic in the creation and annihilation d̂-operators, because it’s
not a one-body operator, but a two-body one, and an approximation is needed. In this
case, the one used is the Hartree-Fock approximation, but any mean-field approxima-
tion, as is the case of DFT, works in the same manner. The approximation will be
developed in section 1.3.

It’s easy to rewrite the noninteracting part of the Hamiltonian in first quantization
Ĥ0 as:

Ĥ0 =
X
mn

�m=�n

HC
�k jmi hnj

| {z }
central region

+
X
�k

��k j�ki h�kj| {z }
reservoirs

+
X
m;�k

�m=��k

(Tm�k jmi h�kj+ T�km j�ki hmj)

| {z }
coupling

(1.11)

The interaction part in first quantization can be rewritten as:

Ĥint =
1

2

X
ijmn
�i=�n
�j=�m

vijmn ji; ji hn;mj
(1.12)

1.2 G R E E N ’ S F U N C T I O N

The central quantity of our formalism is the one-body Green’s function, whose corre-
sponding operator in Second Quantization is given by the next expression in terms of
the second quantization Lippmann-Schwinger operators, which diagonalize the full
Hamiltonian of the entire problem:

Ĝ1(x; z; x0; z0) =
1

{1
T
n
 ̂H(x; z) ̂yH(x0; z0)

o
(1.13)

Where the time-contour ordering operator T orders the operators according to the
Keldysh contour (Stefanucci & Van Leeuwen, 2010). Variable x denotes the position-
spin coordinate so that (x) = (x; �). From now on, subscript 1 of the Green’s func-
tion will be suppressed.
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The form of the Green’s function suitable for the calculations, however, is given
by its grand canonical ensemble average along the Keldysh contour:

G(x; z; x0; z0) �
Tr
h
e��Ĥ

M
Ĝ(x; z; x0; z0)

i
Tr
h
e��ĤM

i
=

1

{

T r
h
T
n
e�{

R
M

d�zĤ(�z) ̂k�;H(x; z) ̂yk�;H(x0; z0)
oi

Tr
h
e��ĤM

i
(1.14)

The statistical average performed after the second equality in (1.2) is explained in
appendix H.1 (see equation (H.19)).

In the case of the field operators we know that they are constant over the entire
contour M (fig. H.1 based on the teory in (Stefanucci & Van Leeuwen, 2010)), which
means:

 ̂(x; z 2 M ) =  ̂(x);  ̂y(x; z 2 M ) =  ̂y(x); (1.15)

Taking into account the (anti)commutation relation for the scattering state opera-
tors:

h
 ̂(x);  ̂y(x0)

i
�

= �(x� x0) (1.16)

Looking at the first line in equation (1.3) and setting x0 = x, z0 = z+, we can write
the average of the density operator n(x; z) = �{G(x; z; x; z+):

n(x; z) =
Tr
h
e��Ĥ

M
 ̂yH(x; z+) ̂H(x; z)

i
Tr
h
e��ĤM

i (1.17)

and, based on the form of the current operator:

~̂j(x; z) =
1

2m{

h
 ̂y(x; z)

�
r ̂(x; z)

�
�
�
r ̂y(x; z)

�
 ̂(x; z)

i
(1.18)

it’s ensemble average results in:

~j(x; z) =
Tr
h
e��Ĥ

M~̂j(x; z)
i

Tr
h
e��ĤM

i
= �

�
r�r0

2m
G(x; z; x0; z+)

� ����
x0=x

(1.19)
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Expression (1.5) is useful to write the Green’s function operator in first quantiza-
tion, which will be denoted with calligraphic letters, Ĝ(z; z0) as:

Ĝ(z; z0) =

Z
dxdx0 jxiG(x; z; x0; z0)



x0
�� (1.20)

where the matrix elementsns of Ĝ(z; z0) are:

hxj Ĝ(z; z0)
��x0� = G(x; z; x0; z0) (1.21)

In the general basis, which can be typically an LCAO, the element j; i of the
Green’s function is calculated as:

Gji(z; z
0) =

1

{

T r
h
e��Ĥ

MT
n
d̂j;H(z)d̂yi;H(z0)

oi
Tr
h
e��ĤM

i (1.22)

It’s remarkable that both expressions of the Green’s function, the Lippmann-Schwinger
scattering eigenstates basedG(x; z; x0; z0) in (1.14) and the general basis basedGji(z; z0)
in (1.22) represent just different matrix elements of the Green’s function operator in
first quantization Ĝ(z; z0). When expanding the Lippmann-Schwinger operators in
G(x; z; x0; z0):

G(x; z; x0; z0) =
X
ji

’j(x)Gji(z; z
0)’�i (x

0)

=
X
ji

hxjjiGji(z; z0)


i
��x0� (1.23)

which, compared with (1.11), reveals:

Ĝ(z; z0) =
X
ji

jjiGji(z; z0) hij (1.24)

and

hjj Ĝ(z; z0) jii = Gji(z; z
0) (1.25)

Because of the generality of the expressions, it is preferable to work with oper-
ator Ĝ(z; z0) than with it’s matrix elements in the basis of the  ̂-operators or the
d̂-operators, to leave the equations invariant and avoid these to depend on the rep-
resentation. If we take the equations of motion of G, known as Kadanoff-Baym
Equations (Stefanucci & Van Leeuwen, 2010; Myöhänen, Stan, Stefanucci, & Van
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Leeuwen, 2009), for noninteracting (and interacting) particles extracted from the
Martin-Schwinger hierarchy:

{
d

dz1
G(x1; z1; x2; z2)�

Z
dx3dz3h(x1; z1; x3z3)G(x3; z3; x2; z2)

= (�(x1 � x2)�(z1; z2))

(1.26)

�{ d
dz2

G(x1; z1; x2; z2)�
Z
dx3dz3G(x1; z1; x3z3)h(x3; z3; x2; z2)

= (�(x1 � x2)�(z1; z2))

(1.27)

where h(x1; z1; x3z3) � �(z1; z2) hx1j ĥ(z1) jx2i. Equations (1.26) and (1.27) are
the expression in the position-spin representation of the more general operator equa-
tions:

�
{
d

dz1
� ĥ(z1)

�
Ĝ(z1; z2) = �(z1; z2) (1.28)

and

Ĝ(z1; z2)

"
�{
 �
d

dz2
� ĥ(z2)

#
= �(z1; z2) (1.29)

The procedure to convert the equations of motion to the operator form as in equa-
tions (1.28) and (1.29) is general, so that one can construct the operator in first quanti-
zation for the n-particle Green’s function, as we do for the two-body Green’s function
G2 in section 1.3.

Because we are interested in the time-dependent ensemble average of one-body
operators, the time evolution of any of these is described by the real-time-axis defined
lesser Green’s function, with t0 > t:

G<ji(t; t
0) = �{

T r
h
e��Ĥ

M
d̂yi;H(t0)d̂j;H(t)

i
Tr
h
e��ĤM

i = �{
X
k

�k h	kj d̂yi;H(t0)d̂j;H(t) j	ki

(1.30)

where the � sign stands for bosons/fermions, and the j	ki’s are the quasi-particle
eigenstates of the interacting Hamiltonian explained in next section. The real time
d̂-operators are in the Heisenberg picture instead of the Keldysh contour one.

1.3 M E A N F I E L D T H E O RY: H A RT R E E - F O C K M E T H O D

Mean Field Theories have an associated Kadanoff-Baym Equation for the Green’s
Function. All the results described for the Hartree-Fock Method are general for Mean
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Field Theories and have their corresponding counterparts with more sofisticated DFT
functionals.

Interparticle interactions correlate the motion of a particle to the motion of all the
other ones. For the two-body interactions considered in equation (1.10), at most two
particles change their state. Under this approximation, a particle can scatter at most
with another particle and, after the scattering event, the two particles end up in new
states.

If the Hamiltonian includes interactions up to only two-body ones, as is the case of
(1.10), the two particles whose interaction is represented by Ĝ2(x1; z1;x2; z2; x01; z

0
1;x
0
2; z
0
2)

feel the presence of all other particles but they are insensitive to their mutual position.
Then, the probability amplitude for the first particle to go from (x0; 1; z01) to (x1; z1)

and the second particle to go from (x0; 2; z02) to (x2; z2) is simply the product of the
probability amplitudes of the two separate events.

The interacting part Ĥint (equation (1.10)) of the Hamiltonian is not a one-body
operator. However, there exist different mean-field approximations which allow to
get suitable single-particle expressions, as is the case of Hartree-Fock.

In E we show that the ensemble average of the interaction part of the Hamiltonian is
proportional to the two-body Green’s function G2(x1; z1;x2; z2; x01; z

0
1;x
0
2; z
0
2). We

now want to develope a suitable approximation to treat the two-body interaction part
as a one-body operator. Similar to the noninteracting equations 1.26 and 1.27, the
Kadanoff-Baym equations for the one-body Green’s function G(x1; z1; x2; z2) of in-
teracting systems are (Myöhänen et al., 2009; Stefanucci & Van Leeuwen, 2010):

�
{
d

dz1
� h(x1; z1)

�
G(x1; z1; x2; z2) = (�(x1 � x2)�(z1; z2))

� {
Z
dx3dz3v(x1; z1; x3; z3)G2(x1; z1;x3; z3; x2; z2;x3; z

+
3 ))

(1.31)

G(x1; z1; x2; z2)

"
�{
 �
d

dz2
� h(x2; z2)

#
= (�(x1 � x2)�(z1; z2))

� {
Z
dx3dz3v(x2; z2; x3; z3)G2(x1; z1;x3; z

�
3 ; x2; z2;x3; z3))

(1.32)

where both the zero-body Green’s funtion G0 � 1 (multiplying the (�(x1 �
x2)�(z1; z2))) and the two-body Green’s funtion G2 appear, as stated by the Martin-
Schwinger Hierarchy for the one-body Green’s function G1.

The Hartree-Fock Method approximates the two-body Green’s functions presents
in (1.31) and (1.32) by one-body Green’s functions. Inserting approximation (1.33)
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into the equations of motion (1.31) and (1.32), we get (1.34) and (1.35), which do not
depend anymore on the two-body Green’s function:

G2(x1; z1;x2; z2; x01; z
0
1;x
0
2; z
0
2) � G2;HF (x1; z1;x2; z2; x01; z

0
1;x
0
2; z
0
2)

� G(x1; z1; x01; z
0
1)G(x2; z2; x02; z

0
2)�G(x1; z1; x02; z

0
2)G(x2; z2; x01; z

0
1)

(1.33)

�
{
d

dz1
� h(x1; z1)

�
G(x1; z1; x2; z2) = (�(x1 � x2)�(z1; z2))

+

Z
dx3dz3�(x1; z1; x3; z3)G(x3; z3; x2; z2))

(1.34)

G(x1; z1; x2; z2)

"
�{
 �
d

dz2
� h(x2; z2)

#
= (�(x1 � x2)�(z1; z2))

+

Z
dx3dz3G(x2; z2; x3; z3)�(x3; z3; x2; z2))

(1.35)

where the � sign in (1.33) stands for bosons/fermions. We have implicitly defined
the self-energy �:

�(x1; z1; x3; z3) = (�(x1 � x3)�(z1; z3))qVH(x1; z1)

+ {v(x1; z1; x3; z3)G(x1; z1; x3; z
+
3 )

(1.36)

with

VH(x1; z1) = � {
q

Z
dx3dz3v(x1; z1; x3; z3)G(x3; z3; x3; z

+
3 )

=

Z
dx3v(x1;x3; z1)n(x3; z1)

(1.37)

where we use v(x1; z1; x3; z3) = �(z1; z3)v(x1;x3; z1) and�{G(x3; z1; x3; z
+
3 ) =

n(x3; z1), the density at point x3 in the position-spin representation and at time z1 in
the Keldysh contour.
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Inserting (1.37) in the equation of motion for the Green’s function (Stefanucci &
Van Leeuwen, 2010):

{
d

dz1
G(x1; z1; x2; z2)

�
Z
dx3dz3

�
h(x1; z1; x3z3) + qVH(x1; z1)(�(x1 � x3)�(z1; z3))

+ {v(x1; z1; x3; z3)G(x1; z1; x3; z
+
3 )
�
G(x3; z3; x2; z2)

= {
d

dz1
G(x1; z1; x2; z2)�

Z
dx3dz3

�
h(x1; z1; x3z3)

+ �(x1; z1; x3; z
+
3 )
�
G(x3; z3; x2; z2) = (�(x1 � x2)�(z1; z2))

(1.38)

simplified by the use of the self-energy as:
with �(x1; z1; x3; z

+
3 ) = �(z1; z3)E(x1;x3; z1).

We have to notice that the quantity

qVH(x1; z1)(�(x1 � x3)�(z1; z3)) (1.39)

is local both in time and space, while the quantity

v(x1; z1; x3; z3)G(x1; z1; x3; z
+
3 )

= �(z1; z3)v(x1;x3)G(x1; z1; x3; z
+
3 )

(1.40)

is local in time (because of the �-function) but is not local in space. However,
this supposes no additional complication for the equivalence with the noninteracting
Green’s function. Defining the Hartree-Fock potential as:

VHF (x1;x2; z) =

�
�(x1 � x2)VH(x1; z) +

{

q
v(x1;x2)G(x1; z; x2; z

+)

�
=

1

q

�
�(x1 � x2)

Z
dxv(x1; x)n(x; z)� v(x1;x2)n(x1;x2; z)

�
(1.41)

where

n(x1;x2; z) = �{G(x1; z; x2; z
+) (1.42)

is the time-dependent one-particle density matrix, where the � sign stands for
bosons/fermions. Introducing, also, the Hartree-Fock potential operator in first quan-
tization:

V̂HF (z) =

Z
dx1dx2 jx1iVHF (x1;x2; z) hx2j (1.43)
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concluding that (1.41) is the matrix element (1; 2) in the position representation by
braketing between hx1j and jx2i of:

�
{
d

dz1
� ĥ(z1)� qV̂HF (z1)

�
Ĝ(z1; z2) = �(z1; z2) (1.44)

which has exactly the same structure as the equation of motion of a noninteracting
Green’s function. This is a completely general result: given an equation of the form
(1.38).

Now we are able to define the operator:

Ê =

Z
dx1dx2 jx1iE(x1;x3; z1) hx2j (1.45)

and comparing with (1.38), which is the braket with hx1j and jx2i of the extended
interacting version of the noninteracting (1.28) with the interaction operator in (1.43):

�
{
d

dz1
� ĥ(z1)� Ê(z1)

�
Ĝ(z1; z2) = �(z1; z2) (1.46)

More generally, any approximation to G2 leading to an equation like (1.46) is a
mean-field approximation, which discards the direct interaction between the particles.
The corresponding mean-field G has the same structure as that of a noninteracting G.
This fact allows us to extend the results of (P. Hyldgaard, 2012; Per Hyldgaard, 2008)
for the nonequilibrium statistical operator in noninteracting systems to interacting
systems under a mean-field approximation, local in time, as is the case of Hartree-
Fock or DFT.

As we noticed in the first paragraph of this chapter, the interacting potential opera-
tor Ê has a sufficiently general form to encomprise any Mean Field Theory, as is the
case of DFT, not only Hartree-Fock.

1.4 S T E A DY- S TAT E F O R M A L I S M

1.4.0.1 Equations of motion

For steady state, which we consider here, the Green’s functions depend only on the
time difference t � t0 , which we can Fourier transform to energy. By Fourier trans-
forming (1.34), under the steady-state condition, we get the Keldysh-Kadanoff-Baym
equation of motion for the Green’s function in the energy (or frequency) domain:

[E � h(x1)]GR(x1;x2;E) = +

Z
dx3�R(x1;x3;E)GR(x3;x2;E) + �(x1 � x2)

(1.47)
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and from reference (Myöhänen et al., 2009) we also have the Keldysh-Kadanoff-
Baym equation of motion for the lesser Green’s function:

[E � h(x1)]G<(x1;x2;E)�
Z

dx3�R(x1;x3;E)G<(x3;x2;E)

=

Z
dx3�<(x1;x3;E)GA(x3;x2;E)

(1.48)

By expanding the operator equation (H.11) in the position representation, we get
the equivalent integral formulation of (1.48), we have:

G<(x1;x2;E) =

Z
dx3

Z
dx4G

R(x1;x3;E)�<(x3;x4;E)GA(x4;x2;E)

(1.49)

where the lesser self-energy is defined as:

�<(x1;x3;E) = �{f(E � �)�(x1;x3;E) (1.50)

where f is the Fermi distribution function and �f its complementary, defined in
(H.6).

In Hartree-Fock the Keldysh-Kadanoff-Baym equation can be written by Fourier
transforming equation (1.38)

�
E �

Z
dx3 (h(x1;x3;E) + �HF (x1;x3;E))

�
G(x1;x2;E)

�
Z
dx3�R=A

c (x1;x3;E)G(x3;x2;E) = �(x1 � x2)

(1.51)

The Hartree-Fock self energy �
R=A
HF , derived from equations (1.41) and (1.43) is:

�
R=A
HF (x1;x2;E) = qVHF (x1;x2) (1.52)

in the long-time limit steady state the Hartree-Fock potential V R=A
HF (x1;x2) does

not depend on time nor energy, so does not the associated the self-energy. Because of
its definition, �HF is real.

The correlation self energy takes into account all the effects beyond Mean-Field
(HF) and has the structure shown in (H.4) (Stefanucci & Van Leeuwen, 2010; Ste-
fanucci & Almbladh, 2004).

The embedding self-energy is not yet present, because it is an artifact of the parti-
tion, a tool to represent the effects of the leads connected to the central region C.

Equations (1.49) and (1.51) are the key ingredients to solve the steady sate trans-
port problem in quantum devices. However, the position-spin representation is not
the most tractable.
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1.4.0.2 NEGF Transport matrix formulation

Changing the basis from the position-spin representation to the general basis of the
’(x) as in (1.13), the Green’s function matrix in the frequency (or energy) domain
satisfies the matrix equation:

X
k

(E+Sik �Hik)G
R
kj(E) = �ij (1.53)

where E+ = E + {� where � is a positive infinitesimal and where the quantity
Sik is introduced multiplying the energy eigenvalue E because of the generalization
of the eigenvalue problem to a nonorthogonal basis. We have implicitly defined the
overlap matrix elements Sik for nonorthogonal basis, which is the case for LCAO:

Sij =

Z
d3r’�i (x)’j(x) (1.54)

Equation (1.53) involves infinite matrix whose elements are the matrix ones in
the basis formed by the orbital functions ’(x), which in our case correspond to a
linear combination of atomic orbitals (LCAO). By partitioning the space into a central
region C and different electrodes connected to it and disconnected between them,
following the Caroli partition scheme (Datta, 1995; Caroli et al., 1971), we represent
the Hamiltonian in equation (1.4) as a block partitioned matrix:

H =

0BBBBBBBBBBBB@

H11 0 0 ::: H1C

0 H22 0 ::: H2C

0 0 H33 ::: H3C

: : : : :

: : : : :

: : : : :

HC1 HC2 HC3 ::: HCC

1CCCCCCCCCCCCA
(1.55)

In the same way as the Hamiltonian, the self-energy and the Green’s function matri-
ces are also partitioned in blocks for the central region C and the reservoirs labelled
� = 1; 2:::. Each block is a matrix, and corresponds to the projection of the full
matrix onto the subspace of localized functions ’i(x) for this reservoir or onto the
subspace of the central region C.

For practical purposes, in this section we will restrict the problem to the case of two
reservoir electrodes L=R, which is the minimum example to illustrate the nonequilib-
rium quantum transport physics. The Hamiltonian (1.55) results:

H =

0BB@HLL HLC HLR

HCL HCC HCR

HRL HRC HRR

1CCA (1.56)



1.4 S T E A DY- S TAT E F O R M A L I S M 15

Rewriting (1.53) in matrix form:

0BB@E
+SLL �HLL E+SLC �HLC E+SLR �HLR

E+SCL �HCL E+SCC �HCC E+SCR �HCR

E+SRL �HRL E+SRC �HRC E+SRR �HRR

1CCA

�

0BB@G
R
LL GRLC GRLR

GRCL GRCC GRCR

GRRL GRRC GRRR

1CCA =

0BB@1LL 0 0

0 1CC 0

0 0 1RR

1CCA
(1.57)

Typically the inter-electrode blocks of the Hamiltonian and the overlap matrices
HLR, HLR, SLR and SRL are negligible, and thus the solution for the matrix Green’s
function GRCC results:

GRCC =
1�

E+SCC �HCC � �R
L(E)� �R

R(E)
� (1.58)

where the quantity SCC is introduced multiplying the energy eigenvalue E, as in
(1.53), because of the generalization of the eigenvalue problem to a nonorthogonal
basis. The embedding self-energies are the expansions in the ’i(x) orbitals of the
operators in (F.27):

�R
L(E) = (E+SCL �HCL)gRLL(E+SLC �HLC)

�R
R(E) = (E+SCR �HCR)gRRR(E+SRC �HRC)

(1.59)

where the unperturbed Green’s functions of the leads is the conversion to a nonorthog-
onal basis of (F.21):

gRLL =
1

[E+SLL �HLL]

gRRR =
1

[E+SRR �HRR]

(1.60)

Equation (1.60) expresses the Green’s function in the molecule in terms of the
Hamiltonian matrix elements in the same region, with the coupling to the left and
right electrode included rigorously in terms of the self-energy operators �R

L(E) and
�R
R(E). Note again that due to the short-range nature of the basis set, only the finite

block of gRLL(RR) is needed for the calculation of �R
L(R)(E) corresponding to the

orbital basis in the left(right) electrode that have non-negligible L(R) overlap with
the orbital basis in the extended molecule. So the calculation of GRCC involves matrix
operations only on finite matrices. The matrix self-energy operator can be taken as the
matrix elements of a non-local operator in real space, as defined in equations (F.19)
and (F.20).
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As we have deduced in appendix F.1, the lesser/greater Green’s function matrix is
the representation in the general basis of the ’i(x) of (F.25):

G<(E) = GR(E)�<(E)GA(E) (1.61)

Because of the decomposition of the embedding self-energy between the different
contacts defined in (F.18) and the definition for the reservoir � lesser self-energy
operator in (F.26), we can rewrite the lesser Green’s function matrix as:

�<(E) = �<
L (E) + �<

R(E) = i�L(E)f(E � �L) + i�R(E)f(E � �R) (1.62)

since there is no “lesser” self-energy operator associated with V xc . And we can
express the correlation function in terms of the distribution in each electrodes:

G<(E) = {[GR(E)�L(E)GA(E)]f(E � �L) + i[GR(E)�R(E)GA(E)]f(E � �R)

(1.63)

where the products within the brackets are matrix products. Every physical observ-
able of interest can be computed from the matrix correlation function G<ij .

But often it is more useful to compute the terminal current directly from the ma-
trix Green’s function and the matrix self-energy operators. This can be achieved by
defining a current in the position representation, as in reference (Caroli et al., 1971):

I(x;x0;E) =
e

h
[H(x1)G<(x1;x2;E)�G<(x2;x1;E)H(x2)] (1.64)

whose diagonal elements give the divergence of the current density:

I(x;x;E) = r � ~J(x;E) (1.65)

Converting from the position representation to the suitable matrix representation
in the basis of the ’i(x) orbitals:

I =
e

h

Z
dE
�
H;G<

�
� (1.66)

Again we have made the transformation from the position representation to the
general basis of the ’i(x) operators, getting the matrix equation involving the Hamil-
tonian and correlation function matrices. From here on the usual derivation using the
matrix notation, often used in second quantization, can be carried through without
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changeproviding us the final form for the current through each terminal (Xue, Datta,
& Ratner, 2002; Datta, 1995, 2005):

IL(R) =
e

h

Z
dETr

�
�L(R)[f(E � �L(R))A(E) + iG<(E)]

�
(1.67)

where the replacement of the spectral function operator Â(E) by its definition in
(F.24), expanded in the ’i(x) basis, results in:

IL(R) =
e

h

Z
dETr[�L(E)GR(E)�R(E)GA(E)][f(E � �L)� f(E � �R)]

(1.68)

where the rate operator matrices for both leads are:

�L(E) = i(�R
L(E)� [�R

L(E)]y);

�R(E) = i(�R
R(E)� [�R

R(E)]y)
(1.69)

1.4.1 Transient solution

The equal time lesser Green’s function matrix (Stefanucci & Van Leeuwen, 2010)
can be calculated from the matrix equations of motion (F.1) and (F.2) by setting

z = t� and z0 = t0+, substracting the former from its adjoint, the latter, and setting
t0 = t:

{
d

dt
�
�
h(t); G<(t; t)

�
�

=
h
GR � �<

em +G< � �A
em +Ge ? �dem

i
(t; t) + H.c.

(1.70)

where Ge, �d are functions whose expressions are detailed in appendix H.

� {G<(t; t) =

Z
dE

2�
f(E � �)

X
�

�
A�(E + V�)

+ V�

h
e{(E+V��heff )tGR(E)A�(E + V�) + H.c.

i
+ V 2

� e
�{heff tGR(E)A�(E + V�)GA(E)e{h

y
eff t

�
(1.71)

where heff = h+ �em and the partial spectral function A�(E) for each reservoir
is

A�(E) = GR(E)A�(E + V�)GA(E), (1.72)
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satisfying

A(E) =
X
�

A�(E). (1.73)



2
T H E O RY

2.1 A B S T R AC T

Nonequilibrium Electron Transport through metallic contacts at the nanoscale has
been studied theoretically and with experiments. However, not only Nonequilibrium
Transport, but mechanical phenomena appear in such devices. These appear due to
the exchange of particles with the reservoirs, tractable through the grand canonical
ensemble[1]. If present, Nonequilibrium Quantum Transport also contributes to the
forces on atoms, as is the case of Electromigration. These forces cause the transfer of
atoms between metallic electrodes and surfaces mediated by an applied bias voltage
(Salgado and Palacios, 2019).

2.2 I N T RO D U C T I O N

As we learned in freshman physics, specifically in Ch. 8 of Feynman’s Lectures on
Physics (Feynman, 1964), the force between the plates of an isolated parallel-plate
condenser, with fixed charge in each plate, is equal to the change in electrostatic inter-
nal energy of the condenser, which is attractive because of the attraction of opposite
charges:

U(Q) =
Q2

2C
; F�z = � Q2

2C2
�C (2.1)

where C is the capacitance and Q the charge on each plate. However, if the con-
denser is supposed to be held by a battery at a constant potential difference V between
the plates, where the charge is not fixed anymore, but determined as Q = V C, the
internal energy and the force become:

U(V ) =
CV 2

2
; F�z =

V 2

2
�C (2.2)

where the force is repulsive, which must be wrong, and opposite to the one in (2.1).
The error committed in (2.2) is that we have not taken into account the work done by
the condenser on the battery. To keep the potential drop between the plates constant
as these move, changing the capacitance, a charge �Q = V�C must be supplied
to the condenser by the battery, at the potential of the electrodes, so that the work
done by the condenser to keep the potential constant is We = V�Q = V 2�C. The
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mechanical work Wm plus this electrical work We make the change in the particle
exchanging open-system energy of the condenser:

Wm +We = F�z + V 2�C =
V 2

2
�C

F�z = �V
2

2
�C

(2.3)

so that we recover the attractive force in (2.1). As we will see in next sections,
something similar happens to quantum devices, not only with an applied bias voltage,
but also with a temperature gradient between the electrodes.

The formulation of the problem rests on an open-boundary model described by
the NEGF. We implemented this framework at the DFT level in a LCAO basis. The
DFT-Hamiltonian for the infinite open system works as the Lippmann-Schwinger
(LS) Hamiltonian in equation (2.7) for the scattering of electrons through the device,
as described by Hyldgaard in references (Per Hyldgaard, 2008; P. Hyldgaard, 2012)
following Herschfield’s work in (Hershfield, 1993). The LS eigenstates diagonaliz-
ing (2.7) form the density matrix tractable through DFT. The open system bound-
ary conditions allow the device to exchange electrons with the reservoirs. The grand
canonical ensemble energy, whose negative gradient describes the forces (Eq.4), is
the Grand Potential 
 described in section 2.3.1, instead of the Internal Energy U ,
calculated from the Hamiltonian Ĥ , valid for isolated systems.

The remaining question concerns the mechanism for the dissipation of this energy
to occur. Instead of reproducing it by the creation of any phonons in the crystalline
lattice, the work associated to the inelastic displacement of the atoms caused by the
forces derived as the gradient of the canonical grand potential 
 explains this dissi-
pation.

2.3 E Q UAT I O N S

2.3.1 Canonical Grand-Potential 


The conversion between Ĥ and 
̂ is performed as the classical Legendre transforma-
tion from the internal energy U(N;S) to the canonical grand-potential 
(f��g ; T )

in equation (2.4)(P. Hyldgaard, 2012; Per Hyldgaard, 2008), where � labels the dif-
ferent reservoirs connected to the system at a chemical potential �� and an inverse
temperature �� = 1=(kBT ), where kB is the Boltzmann constant and T the tempera-
ture. Substracting the Gibbs free energy Y = Y Q+Y E , given by the nonequilibrium
statistical operator, also called Gibbs free energy operator, Ŷ = Ŷ Q + Ŷ E , where Q
stands for charge and E for energy, described in section 2.3.2, we have:


(fT�g ; f��g) = U(S; fN�g)
� Y Q(f��g ; fN�g)� Y E(fT�g ; fS�g)

(2.4)

where � labels the different reservoirs connected to the system. In (2.4) there ap-
pear the common thermodynamic variables: chemical potential �, number of particles
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N , the temperature T and entropy S. The detailed structure of the energies Y Q and
Y E will be discussed in section 2.3.2 from the structure of its associated operators.

It is important to notice that the canonical grand potential 
 can’t be calculated for
infinite systems lake the ones we are dealing with. Instead of it, grand potential energy
variations �
 appeared in the vicinity of the scattering region can be calculated. Only
in the proximity of the scattering region the perturbations on the electronic density are
considered to be non-negligible, and thus this grand potential differences are enough
to reproduce the physics related to the scattering event.

The conversion to second quantization one-body operators:


̂ = Ĥ � Ŷ Q � Ŷ E = Ĥ � Ŷ (2.5)

From now on, second quantization operators will be denoted with modern letters,
Ŷ , while first quantization operators will be denoted by calligraphic ones, Ŷ .

The energies are calculated as the ensemble averages of one-body operators de-
scribed in equation (H.23) of appendix H.1.


 = h
̂i; U = hĤi; Y = hŶ i; (2.6)

2.3.2 Nonequilibrium statistical operator

Throughout this work we always work with (non)interacting systems whose scatter-
ing Hamiltonian in second quantization can be expressed as a one-body operator,
quadratic in the  ̂-operators for the scattering eigenstates which diagonalize it, as:

Ĥ(x0; t0; x; t) =
X
�k�

��k� ̂
y
�k�(x; t) ̂�k�(x0; t0) (2.7)

where � labels the different reservoirs from which electrons are injected, while
k is a generic label for the eigenstates in each reservoir and � separates both spin
components.

On the basis for the one-body operators constituted by the Green’s function, it is
easy to write the nonequilibrium statistical operator or Gibbs Free Energy Operator
for open systems which interchange particles with one or various reservoirs at a chem-
ical potential �� (J. E. Han, 2007; J. E. Han & Heary, 2007; Dutt, Koch, Han, & Le
Hur, 2011; Jong E. Han, Dirks, & Pruschke, 2012; Jong E. Han & Li, 2013). The
calculation of thermodynamic forces rests on the derivatives of this operator:

Ŷ Q(x0; t0; x; t) =
X
�k�

�� ̂
y
�k�(x; t) ̂�k�(x0; t0) (2.8)

In a similar fashion, it has been deduced (Ness, 2014, 2017) an expression for
the nonequilibrium statistical operator Ŷ E in the presence of a temperature gradient
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between two electrodes L=R, which treats the energy flow between the electrodes
instead of the particle interchange. Compared to (2.8), it becomes:

Ŷ E(x0; t0; x; t) =
X
�k�

�� � h�iC
h�iC

��k� ̂
y
�k�(x; t) ̂�k�(x0; t0) (2.9)

where the ��k� are the energy eigenvalues of the particles deep inside each reser-
voir, as for the Hamiltonian, �� = 1=(kBT�) is the inverse temperature at which
the particles are injected from each reservoir � and h�iC is the inverse temperature
promediated in the central or scattering region by means of the central region C par-
tial number of particles injected from each lead as described in equation (F.31) from
section F.1:

h�iC =

P
� ��N�P
�N�

(2.10)

As suggested by Ness (Ness, 2014, 2017), in the pressence of both, interchange of
particles with the reservoirs and a temperature gradient between them, (2.8) has to be
rewritten as:

Ŷ Q(x0; t0; x; t) =
X
�k�

��
h�iC

�� ̂
y
�k�(x; t) ̂�k�(x0; t0) (2.11)

Of course, if there is no temperature gradient between the reservoirs, equation
(2.11) reduces to (2.8).

As stated by Ness (Ness, 2014, 2017), at thermal equilibrium, �� = h�iC for all
� and thus, Ŷ E vanishes. However, at chemical equilibrium, with a single chemical
potential �� = �eq, Ŷ Q does not vanish. It is important to recall that Ŷ Q exists
because of the presence of any particle reservoirs which provide particles at a fixed
chemical potentiual, while Ŷ E exists only because of the presence of a temperature
gradient �� � h�iC between the reservoirs and the central or scattering region C.

From equations (2.7), (2.8), (2.9) and (2.11) we deduce that both Ŷ Q and Ŷ E

commute with the Hamiltonian, since the three operators share the basis of the scat-
tering eigenstates. The three operators are closely related to the density operators
N̂�(x0; t0; x; t) of the number of particles injected from each lead �:

N̂�(x0; t0; x; t) =
X
k�

 ̂y�k�(x; t) ̂�k�(x0; t0) (2.12)

where the  ̂�k�(x0; t0) denote the eigenstates coming from reservoir �, satisfying:

N̂ =
X
�

N̂� (2.13)
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When there is only a single reservoir with a common chemical potential � for the
system molecule-reservoir, the expression (2.8) reduces to:

Ŷ Q(x0; t0; x; t) =
X
k�

� ̂yk�(x; t) ̂k�(x0; t0) = �N̂(x0; t0; x; t) (2.14)

while (2.9) vanishes, because h�iC = �:

Ŷ E(x0; t0; x; t) =
X
k�

� � h�iC
h�iC

�k� ̂
y
k�(x; t) ̂k�(x0; t0) = 0̂ (2.15)

From now on, the spin label � will ve neglected, but all operators may have two
different spin components, for example Ŷ = fŶ+; Ŷ�g, which satisfy the same equa-
tions.

In first quantization, the number operator is related to the lesser Green’s function
as N̂ (x; t) = �{Ĝ<(t; t+). The lesser/greater Green’s functions can be expressed in
the position representation:

Ĝ7(t; t0) =

Z
dxdx0 jxiG7(x; t; x0; t0)



x0
�� (2.16)

or in the general basis representation:

Ĝ7(t; t+) =
X
ji

jjiG7
ji(t; t

+) hij (2.17)

Where the real time lesser/greater Green’s function operator Ĝ7(t; t0) in the steady-
state long-time limit can be extracted from the convolution (Stefanucci & Almbladh,
2004; Myöhänen et al., 2009; Stefanucci & Van Leeuwen, 2010)

lim
t;t0!1

Ĝ7(t; t0) =

Z
dt1dt2ĜR(t; t1)�7(t1; t2)ĜA(t2; t

0) (2.18)

and setting t0 = t+. The lesser/greater self-energy �7(t1; t2) in equation (2.18) is
defined in appendix F.1.

When Fourier transforming, because the convolution only depends on time differ-
ences, it reduces to a simple product of operators:

Ĝ7(E) = ĜR(E)�7(E)ĜA(E) (2.19)
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which can be rewritten as a sum of partial spectral lesser/greater Green’s function
operators as:

Ĝ7(E) =
X
�

Ĝ7
� (E)

Ĝ7
� (E) = ĜR(E)�̂7

�(E)ĜA(E)

(2.20)

This result is enough to calculate steady-state quantities, instead of solving the
Kadanoff-Baym equations.

With operator Ŷ , we get the key ingredient to calculate thermodynamic forces from
now on. Because the nonequilibrium statistical operator for particle exchange ŶQ is
proportional to the number operator corresponding to each reservoir:

ŶQ =
X
�

ŶQ� =
X
�

��
h�iC

��n̂� =
X
�

��
h�iC

��

1Z
�1

dE
1

2�{
Ĝ<� (E) (2.21)

while the nonequilibrium statistical operator for heat exchange ŶE is:

ŶE =
X
�

ŶE� =
X
�

�� � h�iC
h�iC

1Z
�1

EdE
1

2�{
Ĝ<� (E) (2.22)

and, of course:

Ŷ = ŶQ + ŶE (2.23)

Equations (2.23) for the nonequilibrium statistical operator is valid, not only for
noninteracting systems (Per Hyldgaard, 2008; P. Hyldgaard, 2012), but for interacting
ones under a mean-field description (Hartree-Fock, DFT), whose Green’s function,
after the self-consistency is reached, satisfies an equation of motion like (1.46) in
appendix 1.3, analogous to the noninteracting (1.28), but including a one-body, local
in time, approximation for the interactions.

Since the non-equilibrium density matrix is given by

�̂ne =
1

2�{

1Z
�1

dEĜ<(E) (2.24)

the non-equilibrium contributions to the grand canonical potential given by Eqs. (2.21)
and (2.22) can now be calculated as

Y Q =
X
�

Y Q
� =

X
�

��
��
��

1

2�{

1Z
�1

dETr
h
Ĝ<� (E)

i
; (2.25)
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Y E =
X
�

Y E
� =

X
�

�� � ��
��

1

2�{

1Z
�1

dEETr
h
Ĝ<� (E)

i
(2.26)

Here we have used the fact that

Ĝ<Â� = Ĝ<� Â� = Ĝ<�

which can be easily demonstrated taking into account that

Ĝ<� Â�(E) = ���Ĝ<� (E)

and noting that Ĝ<� (E) is the projector on the occupied subspace of Â�(E).

2.3.3 Forces

There are different methods to calculate forces on atoms in quantum chemistry and
condensed matter physics. Using DFT-methos based on a linear combination of atomic
orbitals (LCAO from now on) to describe the problem is a common practice, because
of the dependence of the wavefunctions on the atomic coordinates. This dependence
is propagated from the wavefunctions to the functional evaluations. Calculating the
derivatives of the functionals with respect to the atomic coordinates is then reduced to
a careful application of the chain rule. By doing this, the generalized gradient of the
functional, also called the jacobian matrix (which has only one row or column), and
the matrix of the second derivatives, the hessian matrix, can be calculated. The gen-
eralized gradient or jacobian in conjunction with the total energy (extracted from the
grand potential 
) are the key ingredients to perform DFT-based Molecular Dynam-
ics calculations, by means of algorithms like BFGS (Peng, Ayala, Schlegel, & Frisch,
1996) or Berny (Vreven, Morokuma, Farkas, Schlegel, & Frisch, 2003). Eventually,
the hessian matrix is useful to calculate transition geometries or saddle points.

If a LCAO is used to describe the operators in the DFT-calculation, the equilibrium
positions of the total number P of atoms are calculated by minimizing functional

(�; �) with respect to the basis centers, located on the atomic positions, instead of
the internal energy U(S;N), as for closed systems.

The 3P -dimensional gradient of the 
 functional gives the generalized grand canon-
ical ensemble force FGCE

Ri
acting on atom i until they reach equilibrium, when the

gradient or jacobian becomes vector ~0. The force on atom i is the negative of the 3-D
gradientri = @

@Ri
with respect to theRi = (xi; yi; zi) coordinates:

FGCE
Ri

= �
�

@

@Ri

̂(f��g ; f��g ; fRjg)

�
= �

�
@

@Ri

h
Ĥ(fRjg)� Ŷ (f��g ; f��g ; fRjg)

i� (2.27)
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where indices i; j go over the P atoms. The concatenation of the P 3D-vectors
forms the 3P -dimensional jacobian vector of derivatives useful for the geometry op-
timization calculations described in section 2.3.4. In case of any of the three spatial
coordinates for atom i is frozen, not subject to the minimization, it will be not in-
cluded in the jacobian.

2.3.4 Analytical derivatives

In this section we present the details of the actual implementation of the equations
discussed above using as an example Eq. (2.25). Differentiating with respect to the
coordinateRi, which can be the x, y or z component of the ith atom:

@

@Ri
Y Q =

X
�

��
��
��

1Z
�1

dE
@

@Ri
Tr
h
Ĝ<� (E)

i

=
X
�

��
��
��

1Z
�1

dETr

�
@

@Ri
Ĝ<� (E)

�
:

Now taking into account the expression for Ĝ<� (E) in:

Ĝ7 =
X
�

Ĝ7
�

Ĝ7
� = ĜR�̂7

� ĜA:
(2.28)

and applying the chain rule:

@

@Ri
Ĝ<� (E) =

@

@Ri

h
ĜR(E)�̂<

� (E)ĜA(E)
i

=
@

@Ri

h
ĜR(E)

i
�̂<
� (E)ĜA(E)

+ ĜR(E)
@

@Ri

h
�̂<
� (E)

i
| {z }

0

ĜA(E)

+ ĜR(E)�̂<
� (E)

@

@Ri

h
ĜA(E)

i
Notice that

@�̂<
� (E)

@Ri
= 0

since the self-energy can always be taken independent of the moving coordinates of
the central region when connecting the electrode sufficiently far away. In this regard
one decision to make concerns the size of this central region, i.e., the actual Hamilto-
nian H . Even if the atomic coordinates of the reservoir are considered fixed, energy
changes may occur outside the central region since the electronic perturbation can
propagate into the reservoir. The only way to guarantee this is by making the central
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region larger and larger until convergence in the size is achieved. Alternatively, de-
pending on how many atoms are included in the central region, it may be necessary to
calculate the perturbation on the electronic density of the first layers of the electrodes
and update their self-energy accordingly in the self-consistency.

Now we represent the operators on a generic non-orthogonal basis where the re-
tarded and advanced Green’s function operators become matrices

GR(A)(E) =
h
(E � {�)S � (H+ �(y)(E))

i�1
;

where

�(E) =
X
�

��(E):

We apply now the differentiation rule for inverse matrices:

@

@X
[K]�1 = [K]�1

�
@

@X
K
�

[K]�1

to obtain

@

@Ri

h
GR=A(E)

i
= GR=A(E)

�
(E � i�)

@S
@Ri

� @H
@Ri

�
GR=A(E):

(2.29)

Also notice that we have used the fact that

@�(E)

@Ri
= 0

in Eq. (2.29) which further simplifies the evaluation.
As anticipated in previous section, interactions will be described in the framework

of HF or DFT. Localized atomic orbitals are a standard choice in many codes and are
appropriate to partition the infinite system into the central part and the reservoirs (D
Jacob & Palacios, 2011). Theoretical chemistry codes such as Gaussian (g16) or our
quantum transport code based on it, ANT.Gaussian (J. J. Palacios, Pérez-Jiménez,
Louis, & Vergés, 2001; D Jacob & Palacios, 2011) use gaussian-type orbital basis.
These are convenient since analytical expressions are available for the matrix ele-
ments of one-body operators such as the electron-nuclear interaction Ve�N , the ki-
netic energy T (which adds to the the noninteracting Hamiltonian H0 = Ve�N + T ),
the overlap S, and also the two-body integrals necessary to construct the electron-
electron interaction matrices Ve�e = J +K (in the H-F approximation). To calculate
the forces, first (and second) analytical derivatives of the matrix elements are also
available with respect to the coordinates of the atomic centers on which the basis
elements are centered:

@

@Ri
Ojk; O = Ve�N ; T; S; J;K::: (2.30)
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where O can be any of the matrices which represent the operators in the problem.
In steady-state, the Gibbs Free Energy for each lead considered in equilibrium

with it’s chemical potential �L;R can be calculated from the density of states of the

electrodes D̂L;R(E) =
1

2�{
GL;R(E):

hŶ Q
� i = ��

1Z
�1

dE
1

2�{
G�(E) = ��N̂� (2.31)

In the central region there is no unique chemical potential to be considered, but the
charge can be separated by means of the partial spectral density matrix in 2 contribu-
tions

hŶ Q
C i =

X
�=L;R

��

1Z
�1

dEE
1

2�i
G<�;ij(E) (2.32)

In the central region C, there may exist isolated states which do not cross to any of
the reservoirs. Because of this fact, these states do not contribute to the work done by
the reservoirs on the system and need not to be included in the calculation of Ŷ Q

C .
then given as:

2.4 R E S U LT S

We perform calculations on atomistic systems in equilibrium and out of equilibrium
like the one depicted fig. 4.1. The equilibrium geometries are reached following the
gradient of the canonical grand potential 
, and correspond to its minima with respect
to the coordinates of each atom.

Figure 2.1: Toy representation of an atomic contact between whose two tips an atom can be
moved by means of bias or temperature, following the gradient of the canonical
grand potential 
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